If you have tried putting a map on your site or dashboard, you probably ran into at least one of these:
- "Enable billing to use Google Maps."
- "Enter your credit card for a ‘free’ trial."
- Rate limits, API keys, cryptic documentation, surprise invoices.
Folium skips all of that. It is a Python library that wraps Leaflet.js, a well-known open-source mapping engine. You get flexible, interactive maps - without fees, quotas, or hidden catches.
Why use Folium instead of Google Maps?
- 100% free. No quotas, licenses, or unexpected bills.
- Works natively with Python. Use it in scripts, data pipelines, or Jupyter notebooks.
- Maps are mobile-friendly and interactive by default.
- Excellent for visualizing data: add markers, lines, popups, heatmaps, and more.
- Can work offline: export static maps as HTML and share or embed anywhere.
What can you build with Folium?
- Plot location data from CSV files, DataFrames, or databases
- Show routes, journeys, or event locations
- Map results from any geospatial analysis
- Build interactive dashboards for business, science, or side projects
Quick Start: Your First Folium Map
Here’s all you need to go from zero to a working map:
# Install Folium if needed !pip install folium import folium # Create a map centered on London (latitude, longitude) m = folium.Map(location=[51.5074, -0.1278], zoom_start=10) # Add a marker for London folium.Marker([51.5074, -0.1278], popup="London!").add_to(m) # Save to HTML m.save("mymap.html")
Open mymap.html
in your browser and you will see your interactive map. No signup or payment needed.
A Practical Example: Parks and Monuments in Paris
Suppose you want to let users turn different layers (like "parks" or "monuments") on or off, and avoid clutter from too many markers. Folium supports both layer toggling and marker clustering.
This example shows:
- A clean map style
- Layer control for switching between parks and monuments
- Clustering to prevent marker overlap
- Tooltips and popups for extra info
import folium from folium.plugins import MarkerCluster # Parks data parks = [ {"name": "Jardin du Luxembourg", "lat": 48.8462, "lon": 2.3372, "info": "Historic gardens, popular with locals."}, {"name": "Parc des Buttes-Chaumont", "lat": 48.8809, "lon": 2.3825, "info": "Dramatic park with waterfalls, lake, and city views."}, {"name": "Jardin des Tuileries", "lat": 48.8635, "lon": 2.3270, "info": "Classic park between the Louvre and Place de la Concorde."}, {"name": "Bois de Vincennes", "lat": 48.8282, "lon": 2.4350, "info": "Paris’s largest park: lakes, zoo, trails."}, {"name": "Bois de Boulogne", "lat": 48.8632, "lon": 2.2499, "info": "Large green space, great for cycling."}, {"name": "Parc Monceau", "lat": 48.8791, "lon": 2.3095, "info": "Landscaped park with statues and playgrounds."} ] # Monuments data monuments = [ {"name": "Eiffel Tower", "lat": 48.8584, "lon": 2.2945, "info": "Iconic iron tower."}, {"name": "Arc de Triomphe", "lat": 48.8738, "lon": 2.2950, "info": "Triumphal arch."}, {"name": "Notre-Dame Cathedral", "lat": 48.8529, "lon": 2.3500, "info": "Famous cathedral on the Île de la Cité."}, {"name": "Sainte-Chapelle", "lat": 48.8554, "lon": 2.3450, "info": "Gothic chapel with stunning stained glass."}, {"name": "Panthéon", "lat": 48.8462, "lon": 2.3450, "info": "Mausoleum for famous French citizens."}, {"name": "Sacré-Cœur Basilica", "lat": 48.8867, "lon": 2.3431, "info": "White-domed church atop Montmartre."}, {"name": "Opéra Garnier", "lat": 48.8719, "lon": 2.3316, "info": "Grand 19th-century opera house."}, {"name": "Place de la Concorde", "lat": 48.8656, "lon": 2.3212, "info": "Famous square with Egyptian obelisk."}, {"name": "Pont Alexandre III", "lat": 48.8638, "lon": 2.3130, "info": "Lavish bridge with sculptures."}, {"name": "Les Invalides", "lat": 48.8566, "lon": 2.3126, "info": "Museums and Napoleon’s tomb."} ] # Create the map paris_coords = [48.8566, 2.3522] m = folium.Map(location=paris_coords, zoom_start=12, tiles="CartoDB positron") # Parks group parks_group = folium.FeatureGroup(name="Parks") parks_cluster = MarkerCluster().add_to(parks_group) for park in parks: folium.Marker( location=[park["lat"], park["lon"]], tooltip=park["name"], popup=f"<b>{park['name']}</b><br>{park['info']}", icon=folium.Icon(color="green", icon="tree-conifer", prefix="glyphicon") ).add_to(parks_cluster) parks_group.add_to(m) # Monuments group monuments_group = folium.FeatureGroup(name="Monuments") monuments_cluster = MarkerCluster().add_to(monuments_group) for monument in monuments: folium.Marker( location=[monument["lat"], monument["lon"]], tooltip=monument["name"], popup=f"<b>{monument['name']}</b><br>{monument['info']}", icon=folium.Icon(color="red", icon="info-sign", prefix="glyphicon") ).add_to(monuments_cluster) monuments_group.add_to(m) # Layer control folium.LayerControl(collapsed=False).add_to(m) # Save and show m.save("paris_parks_monuments.html") m # In Jupyter
Open the saved HTML and you get a modern, interactive Paris map with toggles and clustering built-in.
Other Things You Can Do with Folium
- Group markers into clusters for less clutter
- Draw lines, polygons, or highlight areas
- Visualize regions using choropleth overlays
- Use custom basemaps, including satellite or minimalist styles
- Save as standalone HTML for sharing or embedding
- Display maps directly inside Jupyter notebooks
If you want a mapping tool for analysis, reporting, or your own side project, Folium is a quick, capable solution that just works, and gets out of your way.
That’s the vibecoding approach.